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Abstract: This article presents a very detailed resolution of a non-trivial problem in Electromagnetic Theory. The problem 

basically consists of a circular conducting loop of radius R, which has a current I, and is located with its center at the origin of the 

Cartesian coordinate system. It is rotated with respect to the normal to its plane with angles of θ0 and φ0 in spherical coordinates, 

in addition, there is an applied External Magnetic Field. The forces generated by the magnetic field in all directions were 

calculated without approximations, where in the z direction the force is zero, as expected. 
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1. Introduction 

Classical electromagnetic theory, together with classical 

mechanics and quantum mechanics, constitute a core of 

extremely important disciplines for undergraduate and 

graduate students in physics [1-3]. The mathematical tool used 

in these courses usually involves vector calculations, ordinary 

and partial differential equations, Fourier series, Laplace 

transformations, among others [4-6]. 

Mechanics tells us as a system that is subject to a certain 

Force. We know that there are for the moment only the 

fundamental forces in Physics, which are: Strong, 

Electromagnetic, Weak and Gravitational, are written from 

stronger to weak, respectively [7, 8]. 

Strong forces are the ones that keep protons and neutrons 

attached to the atoms, they have an extremely short range, but 

they are a hundred times stronger than the electric forces. The 

Weak force, which is of the radioactive decay, not only has a 

short range, but is also much weaker than the electromagnetic. 

As for Gravitational, it is such a despicable one, that it is only 

due to great concentrations of masses, like the Earth and the 

Sun, that we can even perceive it.  

The laws of electrodynamics were gradually discovered by 

Franklin, Coulomb, Ampère, Faraday, among others. But who 

actually completed this task, compacting the equations in a 

way, was the famous Maxwell [9, 10].  

In this way, when we talk about solving problems, many 

students present difficulties, due to the degree of mathematical 

complexity present in the exercises, ending up often failing to 

solve some problems.  

The main objective of this work is to solve, in a systematic 

and unprecedented way, an intriguing and quite interesting 

problem of electromagnetic theory, which is not so trivial but 

with a certain mathematical capacity we can solve the 

problem. 

2. Calculation of Forces Acting on the 

Loop 

The problem basically consists of a circular conducting 

loop of radius R, which has a current I, and is located with its 

center at the origin of the Cartesian coordinate system. It is 

rotated with respect to the normal to its plane with angles of θ0 

and φ0 in spherical coordinates, as can be observed in Figure 1. 

In addition, there is an applied external magnetic field, written 

as follows ( ) ( )0 0
ˆ ˆ(x) 1 1B B y i B x jη η= + + +

��

�

 

We intend to calculate then the resulting force acting on the 

loop without making any approximation. We know that by the 

Law of Biot-Savart [7, 11], when a current with a density 

( )xJ
��

�

 is in an external magnetic field with a magnetic flux 

density ( )xB
��

�

, The law of fundamental force says that the 
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total force on the current distribution is given by [1]. 

 

Figure 1. Sketch of the problem of a circular conductive loop, rotated on two 

Cartesian axes, with an applied external field. 

( ) ( ) 31
x x xF J B d

c
= ⊗∫
�� �� ��

� � �

            (1) 

Since this problem is not so simple, since we have a rotation 

of coordinates in two Cartesian axes, we must make a rotation 

of coordinates as follows: R(x,y,z) → R’(x’,y’,z’) → 

R’’(x’’,y’’,z’’). 

In this way the new coordinates can be written as: 

0 0

0 0

0 0

0 0

' cos

' cos

'

'' cos ' z'

'' '

'' ' cos '

x x sen y

y sen x y

z z

e

x x sen

y y
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ϕ ϕ

θ θ

θ θ

= +
 = − +
 =

= −
 =
 = +

              (2) 

To facilitate the understanding of the calculation, let's write 

the coordinates in matrix form [12], as follows: 

0 0

0 0

cos 0'

' cos 0

' 0 0 1

senx x

y sen y

z z

ϕ ϕ

ϕ ϕ

 
    
    = −       
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 

          (3) 

0 0
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'' 0 1 0 '

'' '0 cos

senx x

y y

z zsen

θ θ

θ θ
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        

 

        (4) 

To find the coordinates (x, y, z) we have to multiply the 

matrix (4) by the matrix (3), and write the transposed matrix, 

that is: 

0 0

0 0

0 0

0 0

cos 0'' '

'' ' 0 1 0

'' ' 0 cos

cos 0

cos 0

0 0 1

senx x
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    (5) 
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  (6) 

Consequently, through this matrix we can write the unitary 

verses, being: 

0 0 0 0 0

0 0

0 0 0 0 0

ˆˆ ˆ ˆ'' cos cos cos

ˆ ˆ ˆ'' cos

ˆ ˆˆ ˆk'' cos cos

i i sen j sen k

j sen i j

sen i sen sen j k

θ ϕ θ ϕ θ
ϕ ϕ

θ ϕ θ ϕ θ

 = + −
 = +
 = + +

     (7) 

Writing the transposed matrix, which basically means 

replacing what was column in line and what was line turns 

column, we get then: 

0 0 0 0 0

0 0 0 0 0

0 0

cos cos cos ''

cos sen cos sen ''

''0 cos

x

y

z

sen sen x

sen y

zsen
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 (8) 

Finally, the original coordinates we are looking for can be 

written as: 

0 0 0 0 0

0 0 0 0 0

0 0

cos cos '' '' cos ''

cos '' cos '' ''

'' cos z''

x x sen y sen z

y sen x y sen sen z

z sen x

θ ϕ ϕ θ ϕ
θ ϕ ϕ θ ϕ
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= − +
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 = − +

    (9) 

Now that we have already determined the coordinates (x, y, 

z), our problem consists of calculating the integral of equation 

1, in order to find the force. First we determine the current 

distribution ( ) 3
J x d x
��

� �

, and then determine the vector product 

between the current density ( )J x
��

�

 and the magnetic flux

( )B x
��

�

.  
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( ) 3 ˆx xJ d Idl IRdϕϕ= =
�� �

� �

             (10) 

But knowing that ˆ ˆˆ '' cos ''sen i jϕ ϕ ϕ= − + , then eq. (10) is: 

( ) 3 ˆ ˆx x '' cos ''J d IRd sen i jϕ ϕ ϕ = − + 

��

� �

         (11) 

From eq. (7), we take that the unitary verses in the x and y 

direction are 0 0 0 0 0
ˆˆ ˆ ˆ'' cos cos cosi i sen j sen kθ ϕ θ ϕ θ= + − , and 

0 0
ˆ ˆ ˆ'' cosj sen i jϕ ϕ= + , and replacing in (11), is: 
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   (13) 

The magnetic field is written as

( ) ( )0 0
ˆ ˆ(x) 1 1B B y i B x jη η= + + +

��

�

, but we already know the 

components x and y, as shown in eq. (9), in this way we can do 

the substitution and find that: 

( )
( )

0 0 0 0

0 0 0 0
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��

�

    (14) 

But in spherical coordinates '' cosx R ϕ=  and 

y'' senR ϕ= , soon: 

( )
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�

   (15) 

Now we replace (13) and (15) in eq. (1), and we find that the 

force F
��

in the loop will then be: 
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   (16) 

Decomposing the forces we will have: 

t x y zF F F F= + +                  (17) 

At where, 

( ) ( ) 31
x
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c
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�

           (18) 
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Remembering that: 

2

0

cos 0sen d

π

ϕ ϕ ϕ =∫ e 

2 2

2 2
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π π
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2
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IR
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Applying the same reasoning taken in (18), we will have 

that forces 
yF e

z
F , will respectively: 

( ) ( )
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3
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1
x

1
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and therefore, 

2

0 0 0
cos

y

IR
F B sen

c
ηπ θ ϕ=           (23) 

0
z

F =                   (24) 

As already expected, the force in the z-direction is zero, 

since the applied external magnetic field has only components 

in the x and y directions, so we will only have force 

components in these same directions. 

3. Conclusion 

Through this work it was possible to develop and solve a 

problem of electromagnetic theory consisting of a circular 

conductive loop with a current I that is rotated in two axes of 

its Cartesian plane with respect to its normal and still has an 

external magnetic field. It was found that the force in the 

z-direction is zero, as expected, since the external field has 

only components in the x and y direction. 

It is hoped that this work contributes significantly to 

undergraduate students as well as graduate students, in order 

to understand problems of this type, which are well adopted in 

university courses. 
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